流れる空の中で数学を。

とある数学好きの「手作りすうがく」と「気ままな雑記」。

【解の構成方法】マスターデーモンの一般化

マスターデーモンの一般化

 今回の記事では、マスターデーモンの一般化について考える。
自然数rが与えられたとき、2以上のn
\frac{r^n+1}{n^2}……(1)
が整数となるものを全て求めよ。」

 結論から言うと、(1)式が整数になるような任意のnを構成するアルゴリズムを求めることはできた。ところが、一般の自然数rに対して、nを一般的に表す公式を求めるのは極めて困難である。そのため、(1)式を満たす解が無限に存在するかどうかすらも難しい。この難しさは、素因数分解の難しさに関連するものなので、相当な「武器」を持ってこないと太刀打ちできないだろう。
 また、この記事では、自然数1以上の整数であるとする。

今回の話のアウトライン

今回の記事のアウトラインは、次の通りである。

①:nが偶数にならないこと
②:nの最小の素因数が、r+1の奇数の素因数のいずれかに一致すること
③:nの最小の素因数の指数は、r+1の対応する素因数の指数以下であること
④と⑤:③の証明
⑥:一般化されたマスターデーモンの解を構成するアルゴリズム

①②③を繰り返し用いることで、(1)式が整数になる任意のnを構成するアルゴリズムが得られる。

nが偶数にならないこと

 rが偶数のときは、(1)式の分子が奇数になるので、(1)式の分母は偶数ではない。よって、nも偶数でない。
 rが奇数の時、nが偶数と仮定する。すると、(1)式の分母は4の倍数になるので、(1)式が整数になるなら分子r^n+14の倍数である。従って、

r^n+1\equiv 0 (\bmod 4)……(2)

 ところが、rは奇数なので、

r\equiv \pm 1 (\bmod 4)……(3)

であるので、これを(2)式に代入すると、nを偶数と仮定したことから、

(\pm 1)^n+1 \equiv 1+1 \equiv 2
\therefore 2 \equiv 0 (\bmod 4)……(4)
となるので、矛盾である。背理法により、rが奇数のときも、nは偶数ではない。
 よって、(1)式が整数になるならば、nは偶数ではない。

nの最小の素因数が、r+1の奇数の素因数のいずれかに一致すること

 n(\ge 2)の最小の素因数をqとし、その指数をkとする。すると、nは、pと互いに素な自然数Nを用いて、

n=q^k N……(5)

と表せる。(1)式の分母がqの倍数になるので、

r^n+1\equiv 0 (\bmod q)……(6)

である必要がある。フェルマーの小定理より、

r^n+1\equiv r^{q^k N}+1 \equiv r^N +1 \equiv 0 (\bmod q)……(8)
r^{2N}\equiv 1(\bmod q)……(9)

また、フェルマーの小定理より、

r^{q-1}\equiv 1 (\bmod q)……(10)

ここで、法をqとしたときのrの位数は、\gcd(2N,q-1)の約数になるが、Nqより小さい素因数を持たないので、

\gcd(2N,q-1)=2……(11)

である。よって、

r\equiv 1 (\bmod q)またはr^2\equiv 1(\bmod q)
\iff r\equiv \pm 1(\bmod q)……(12)

である。r \equiv 1(\bmod q)とすると、(8)式より、

1^N+1\equiv 2 \equiv 0 (\bmod q)……(13)

となるので矛盾である。従って、

r\equiv -1 (\bmod q)
\therefore r+1 \equiv 0(\bmod q)……(14)

である。
 よって、nの最小の素因数qは、r+1の奇数の素因数のいずれかに一致する。

nの最小の素因数の指数は、r+1の対応する素因数の指数以下であること

 r+1が次のように素因数分解されたとする。

r+1=2^{e_0} p_1^{e_1} p_2^{e_2} \cdots p_t^{e_t}……(15)

ここで、tは1以上のある自然数で、e_j(j=0,1,\cdots,t)は0以上の整数で、e_jの内少なくとも1つは0ではない。

 ②より、nの最小の素因数は、あるj(=1,2,\cdots,t)に対して

q=p_j……(16)
である。n=q^k Nなので、r^nは次の形に因数分解できる。

r^{q^k N}+1=(r+1)f_q(r)f_q(r^q)f_q(r^{q^2}) \cdots f_q(r^{q^{k-1}})f_N(r^{q^k})……(17)

ここで、f_m(x)は、奇数mに対して、

f_m(x)=\frac{r^m+1}{r+1}=1-r+r^2-\cdots+ r^{m-1}……(18)

と定義している。このように因数分解したとき、j=0,1,\cdots,k-1に対して、

f_q(r^{q^j})\equiv 0 (\bmod q)……(19)
f_q(r^{q^j})\not\equiv 0 (\bmod q^2)……(20)
f_N(r^{q^k})\not\equiv 0 (\bmod q)……(21)

であることが示せる(後で、④,⑤で示す)。従って、f_q(r^{q^j})は、qでちょうど1回だけ割り切れるので、(15),(17)式より、

r^n+1q=p_je_j+k回だけ割り切れる……(22)

(1)式の分母は、qで[2k]回割り切れるので、(1)式が整数であるためには、

e_j+k \ge 2k
\iff \le e_j
\therefore k=1,2,\cdots, e_j……(23)

である必要がある。
 特に、
n=q^k(k=1,2,\cdots,e_j)

は一般化されたマスターデーモンの1つの解となっている。
 それでは、(19),(20),(21)式を示そう。

f_q(r^{q^j})\equiv 0 (\bmod q)f_N(r^{q^k})\not\equiv 0 (\bmod q)であること

  フェルマーの小定理より、j=0,1,\cdots,k-1に対して、

f_q(r^{q^j})\equiv f_q(r) (\bmod q)……(24)
f_N(r^{q^k})\equiv f_N(r) (\bmod q)……(25)

である。(14),(18)式より、Nqが互いに素であることに注意して、

f_q(r)\equiv 1-(-1)+(-1)^2-\cdots (-1)^{q-1}\equiv q \equiv 0 (\bmod q)……(26)
f_N(r)\equiv 1-(-1)+(-1)^2-\cdots (-1)^{N-1}\equiv N \not\equiv 0 (\bmod q)……(27)

よって、(19),(21)式が成立する。

f_q(r^{q^j})\not\equiv 0 (\bmod q^2)であること

  まず、r+1\equiv 0 (\bmod q)より、

(r+1)^2\equiv r^2+2r+1\equiv 0 (\bmod q^2)
r^2 \equiv -2r-1 (\bmod q^2)……(28)

であるので、qを法とするとき、f_q(r^{q^j}rの1次式で表せることに着目する。j自然数とするとき、

r^j=a_j r + b_j……(29)

と置くと、(29)式にrをかけて、(28)式を用いることで、a_j,b_jの漸化式を得る。

a_{j+1}=b_j-2a_j……(30)
b_{j+1}=-a_j……(31)

(31)式を(30)式に用いて、

a_{j+1}=-2a_j -a_{j-1}……(32)

となるので、a_jの一般解は、

a_j=(-1)^j(\alpha j +\beta)……(33)

と表せる。a_1=1,a_2=-2となることから、\alpha,\betaを求めた後、

a_j=(-1)^{j+1} j……(34)
b_j=(-1)^{j-1}(j-1)……(35)

を得る。これより、

f_q(r)=1+\sum_{j=1}^{q-1} r^j
\equiv 1-(\sum_{j=1}^{q-1} (-1)^j)r +(\sum_{j=1}^{q-1} (-1)^{j-1} (j-1)) (\bmod q^2)
 \equiv \frac{1-q}{2} r + \frac{3-q}{2}……(36)

ここで、f_q(r)\equiv 0 (\bmod q^2)と仮定すると、

\frac{1-q}{2} r + \frac{3-q}{2} \equiv 0 (\bmod q^2)
q(1-q) - q(q-3) \equiv 0(\bmod q^2)
q (r+3) \equiv 0  (\bmod q^2)
\therefore r\equiv -3 (\bmod q)……(37)

となるが、r\equiv -1 (\bmod q)であったので矛盾。よって、

f_q(r)\not\equiv 0 (\bmod q^2)……(38)

 次にオイラーの定理より、

r^{\varphi(q^2)}\equiv r^{q(q-1)} \equiv1(\bmod q^2)
\therefore r^{q^2}\equiv r^q (\bmod q^2)……(39)

であるので、

j=1,\cdots,k-1に対して、

f_q(r^{q^j})\equiv f_q(r^q) (\bmod q^2)……(40)

が言えるので、f_q(r^{q^j})\not\equiv 0 (\bmod q^2)を示すには、

f_q(r^q) \not\equiv 0 (\bmod q^2)……(41)

を示せば十分である。f_q(r)\not\equiv 0 (\bmod q^2)を示したときと同様にして、

f_q(r^q)\equiv  - \frac{q^2-q}{2} r - \frac{q^2-q-2}{2} (\bmod q^2)……(42)

を得る。f_q(r^q) \equiv 0 (\bmod q^2)となったと仮定すると、(42)式に2をかけて、

(-q^2+q)r \equiv q^2 -q -2 (\bmod q^2)
qr \equiv -q-2 (\bmod q^2)
0\equiv q^2 r \equiv -2q
 \therefore 2q\equiv 0 (\bmod q^2)……(43)

これを満たす奇素数qは存在しないので、矛盾。よって、

f_q(r^q)\not\equiv 0 (\bmod q^2)……(44)

 以上をまとめて、j=0,1,\cdots,k-1に対して、

f_q(r^{q^j}) \not\equiv 0 (\bmod q^2)……(45)

が示せた。

⑥:一般化されたマスターデーモンの解を構成するアルゴリズム

 ①~③を繰り返し用いることにより、一般化されたマスターデーモンの解を構成するアルゴリズムが得られる。

r_1=rとおき、(15)式のように、
r_1+1=2^{e_0} p_1^{e_1} p_2^{e_2} \cdots p_t^{e_t}……(46)
素因数分解できたとき、あるp_jを1つとり、

q_1=p_j……(47)

とおく。すると、①~③より、次のe_j個の自然数は一般化されたマスターデーモンの解になる。

n=n_1=q_1^{k_1} (k_1=1,2,\cdots,e_j)……(48)

ここで、(48)式のそれぞれの解に対して、

r_2=r_1^{q_1^{k_1}}……(49)

とおく。

 ここまでを最初のステップとして、一般化されたマスターデーモンの全ての一般解は、以下のようなアルゴリズムにより構成できる。 

 r_m(m \ge 1)が与えられ、

r_m+1=2^{e_0} p_1^{e_1} p_2^{e_2} \cdots p_t^{e_t}……(50)

素因数分解できたする。(ここでは、式の見やすさの便宜上、(46)式と同じ記号p_j,e_jを用いているだけで、(50)式の素因数とその指数は(46)式とは別に定まるものである。そして、以下に現れるp_j,e_jは全て(50)式のものである。)

 このとき、p_j \gt q_{n-1}となる素因数を1つ選び、

q_{m+1}=p_j……(51)

とおく。そして、k_{m+1}=1,2,\cdots,e_jに対して、

n=n_{m+1}=n_m  q_{m+1}^{k_{m+1}}……(52)

とおく。すると、①~③より、(52)式で構成される全てのnは一般化されたマスターデーモンの解となる。
 最後に、

r_{m+1}=(r_m)^{q_{m+1}^{k_{m+1}}}……(53)

とおき、同じアルゴリズムを繰り返すことで、一般化されたマスターデーモンの全ての解が得られる。(このことは、rを(53)式で繰り返し与え直して、①~③を繰り返し適用できることからわかる。)
 このアルゴリズムが有限回で終われば、一般化されたマスターデーモンは有限個の解しか持たない。このアルゴリズムが有限回で終わるためには、k_1,k_2,\cdotsのあらゆ取り方によって構成され得る任意の自然数の系列

r_1+1,r_2+1,\cdots,r_m+1,\cdots……(54)

に現れる素因数の種類が有限であればいい。(これは素因数分解を前提にした話になっているので、これ以上立ち入って一般論を展開するのはかなり困難だと思う。)

 特に、r=2のときは、

2+1=3
2^3+1=9=3^2

となるので、上記のアルゴリズムは1回目で終了し、r=2のときの解が3しか存在しないことがわかる。他にもいくつかのrで試してみる。

  r=3の場合は、

r+1=4=2^2

なので、解は存在しない。

 r=4の場合は、

4+1=5
4^5+1=1025=5^2\times 41

より、n=5,205(=5\times41)などが解になるが、(54)式の系列に現れる素因数の種類が有限であるかは自明でないので、解の個数も自明ではない。

 r=5の場合は、

5+1=6=2 \times 3
5^3+1=126=2\times 3^2 \times 7

より、n=3,21(=3\times 7)などが解になるが、これもまた、(54)式の系列に現れる素因数の種類が有限であるかは自明でないので、解の個数も自明ではない。

 r=20の場合も考えてみると、

20+1=21=3\times 7

より、n=3,7などが解になることがわかる。この場合も解の個数は非自明である。

 最後に、以上のアルゴリズムから次の系が導かれることを指摘しておく。

(i) r+1が奇数の素因子を持たないとき、一般化されたマスターデーモンは解を待たない。
(ii) r+1が奇数の素因子を持つとき一般化されたマスターデーモンは解を持ち、そのうち最小の解は、r+1の最小の奇数の素因子pに一致する。

 

マスターデーモンがついに解けました

追記(2018/07/25):計算ミスがあり、証明も冗長だったので、少し修正しました。

マスターデーモン

 マスターデーモンとは、1990年IMO中国大会の第3問で出題された次の問題である。

「2以上の自然数n
\frac{2^n+1}{n^2}……(1)
が整数となるものを全て求めよ。」

 この問題、かなり前に挑戦したが、解けなくてしばらく放置していた。 

sky-time-math.hatenablog.jp


 ひさびさに問題を見てみるとなんだか解ける感触がしたので、やってみたらついに解けました。そこで、今回は自分がたどり着いた解法を記事にまとめておきます。フェルマーの小定理合同式さえしっていれば、普通の高校生でも理解できるように書いたつもりです。最近暑くて頭の回転が鈍っているので、うっかりどこかを間違えているかもしれませんが、そのときは優しく指摘してくれると助かります。

追記(2018/07/28):一般化されたマスターデーモンの解を与えるアルゴリズムも作りました。興味がある方は以下の記事を参考にしてください。

sky-time-math.hatenablog.jp

 

 

解答のアウトライン

 nが偶数なら、与式の分母が偶数、分子が奇数となるので題意の式は整数にならない。以後、nは奇数とする。
 n=3が求める解の内の一つであることはすぐにわかる。そして、解がこれしかないことを示したい。
 今回、自分が使ったアプローチは「因数分解」による方法だ。
nがある素因数p( \ge 3)k(\ge 1)個もつとき、すなわちn=p^k N(Nは奇数で、Npは互いに素。)とあらわせるとき、r^n+1は次の形に因数分解できる。(r自然数)

r^n+1=(r+1) \cdot \frac{r^p+1}{r+1} \cdot \frac{r^{p^2}+1}{r^p+1} \cdots \frac{r^{p^k}+1}{r^{p^{k-1}}+1}\cdot \frac{r^{p^{k} N}+1 }{r^{p^k}+1} ……(2)

といっても、このままでは見づらいので、少し記号を用意する。mを奇数、x自然数とするとき、自然数f_m(x)

f_m(x)=\frac{x^m+1}{x+1}=1-x+x^2-\cdots+x^{m-1}……(3)

とおくと、(2)式は次のように書き直せる。

r^n+1=(r+1) f_p(r) \cdot f_p(r^p) \cdot f_p(r^{p^2}) \cdots f_p(r^{p^{k-1}}) \cdot f_N(r^{p^k})……(4)

このような因数分解nの各素因子ごとに存在するので、これをうまく使って問題を解いていく。証明は、次の2つのパートに分かれる

nに素因数3がいくつ含まれるか?
n=3^kNと表される場合を考えて、(4)式でr=2,p=3とすると、f_p(r^{p^l})(l=0,1,2,\cdots,k)が3でちょうど一回だけ割れることを示す。そのことから、2^n+1が素因数3k+1個だけ持つことがわかる。分母には素因子32k個現れるので、n=3^kNに現れる指数はk=0,1でなければならないことがわかる。

n3より大きい素因数を持たないこと。
n3の次に大きい素因子pを持つと仮定として、その指数をmとする。つまり、n=3^k p^m M(k=0,1)と表せる場合を考える。このとき、8\equiv 1 (\bmod 7)のため、k=1の場合、

2^n+1\equiv 8^{p^m M}+1 \equiv 2 \not\equiv 0 (\bmod 7)

よって、k=1の場合、(1)式の分子は7の倍数ではないので、n7を素因数に持たない。
 最後に、2^n+1\equiv 8^{p^m M}+1が素因数pを持たないことを背理法により示す。

 ①②から、題意を満たすn3のみであることがわかる。

nに素因数3がいくつ含まれるか?

n=3^kNと表される場合を考える。(4)式でr=2,p=3l=0,1,2,\cdots,kとして、

f_p(r^{p^l})=f_3(2^{3^l})=1-2^{3^l}+2^{2\cdot 3^l}……(5)

ここで、2 \equiv -1 (\bmod 3)より、

f_p(r^{p^l}) \equiv 1-(-1)^{3^l}+(-1)^{2\cdot 3^l} \equiv 1+1+1 \equiv 0 (\bmod 3)

また、9=3^2を法として考えると、
f_p(r)=1-2+4 =3 \not\equiv 0 (\bmod 9)……(6)

であり、l=1,2,\cdots,kとして、
f_p(r^{p^l})=1-2^{3^l}+2^{2\cdot 3^l}=1-8^{3^{l-1}}+8^{2\cdot3^{l-1}}……(7)

であるが、8\equiv -1 (\bmod 9)なので、

f_p(r^{p^l}) \equiv 1-(-1)^{3^{l-1}}+(-1)^{2\cdot3^{l-1}} =1 +1+1 =3 \not\equiv 0 (\bmod 9)……(8)

従って、f_p(r^{p^l})は素因数3をちょうど1つだけ持つ。

 続いて、f_N(r^{p^k})3で割れないことを確認する。

f_N(r^{p^k})=f_N(2^{3^k})=1-2^{3^k}+2^{2 \cdot 3^k} - \cdots + 2^{(N-1) \cdot 3^k}……(9)

再び、2 \equiv -1 (\bmod 3)なので、

f_N(r^{p^k}) \equiv 1 - (-1)^{3^k} + \cdots +(-1)^{(N-1)\cdot 3^k} (\bmod 3)
\equiv 1+1+\cdots+1=N (\bmod 3)……(10)

ところで、N3と互いに素なので、N3の倍数でない。よって、

f_N(r^{p^k}) \equiv N \not\equiv 0 (\bmod 3)……(11)

以上より、(4)式でr=2,p=3とすることで、2^n+1は素因数3k+1個持つことがわかった。したがって、分母に現れる素因数3の個数が2k個なので、(1)式が整数となるためには、

k+1 \ge 2k
k =0,1……(12)

でなければならないことがわかった。よって、題意を満たすnn=3^k N(k=0,1)と表せる。

n3より大きい素因数を持たないこと

 n3の次に大きい素因子pを持つと仮定として、その指数をmとする。つまり、

n=3^k p^m M(k=0,1)……(13)

と表せる場合を考える。ここで、解答のアウトラインで書いたように、k=1のとき、p7ではない。

p \neq 7……(14)

2^n+1pを素因数に持たないことを示したい背理法で示したいので、2^n+1pで割り切れたと仮定する。まず

R=2^{3^k}……(15)

とおくと、k=0,1なので、

R=2,8……(16)

である。法をpとしてフェルマーの小定理を使うと、R^p\equiv R(\bmod p)なので、

2^n+1=R^{p^m M}+1\equiv R^M+1 (\bmod p)……(17)

となる。仮定より、2^n+1\equiv 0(\bmod p)なので、

R^M +1 \equiv 0  (\bmod p)……(18)
R^{2M}\equiv 1 (\bmod p)……(19)

また、フェルマーの小定理より、

R^{p-1}\equiv 1 (\bmod p)……(20)

であった。ここで、

R^{\mu}\equiv 1(\bmod p) ……(21)

が成り立つ最小の正の整数を\muとすると、(19),(20)式より、ある正の整数s,tが存在して、

2M=s \mu……(22)
p-1=t \mu……(23)

と表せる。(22)式の両辺にtをかけると、

2Mt=s (p-1)……(24)

ここで、(13)式に戻り、Mの定義に立ち戻ると、Mの素因子はすべて p (\gt p-1)より大きいので、(24)式からある正の整数uが存在して、

s=Mu……(25)

となる。これを(22)式に代入して整理すると、

2=u \mu……(26)

従って、

\mu=1,2……(27)

である。(16)式よりR=2,8であったので、

(i)R=2の場合、(21)式から

2 \equiv 1 (\bmod p)または2^2 \equiv 1(\bmod p)

\Rightarrow 1\equiv 0(\bmod p)または3 \equiv 0 (\bmod p)……(28)

となるが、これを満たす素数p (\ge 5)は存在しないので矛盾。

(ii)R=8の場合も、(21)式から

8 \equiv 1(\bmod p)または8^2 \equiv 1 (\bmod p)

\Rightarrow 7\equiv 0(\bmod p)または63 =3^2\times7 \equiv 0 (\bmod p)……(29)

となる。これを満たす素数p (\ge 5)7のみであるが、R=8のときk=1であり、この場合、(14)式に書いたようにp\neq 7なので矛盾。

 以上より、背理法の仮定が偽であることが言えたので、

2^n+1pで割れないことが示された

 以上より、n3より大きな素因数を持つとすると、2^n+1pで割れきれず、(1)式の分母n^2が素因数pを持つので、(1)式は整数にならない。従って、n3より大きい素因数を持たない。

よって、(1)式が整数になるような整数n (\ge 2)は、n=3に限ることが言えた。

【素数p,q】5^p+1がqで割り切れ、5^q+1はpで割り切れる

整数問題bot②で見かけた良問

 昨日(今日)の深夜に整数問題bot②で、ある問題がふと目についた。次のツイートである。

 

「出典はヒ・ミ・ツ♡」とか書いてあるのがお茶目で、すごく気になったのだ。
この問題、最初はどこから手を付けるかやや悩んだ。(深夜で頭の回転が鈍っていたのかもしれないが……)

 この問題を解き終わったとき、少し前に勉強した群論の知識がうまく使えて、本で勉強した知識を再確認でき、理解が一歩研ぎ澄まされた感じがした。つまり、群論を少し勉強した人にとって、この問題は良問だと思うので紹介してみたい。

 ここでの解説は、群論の知識が無い高校生でも読めるように書いてみるので、整数問題が好きな高校生でも楽しめると思う。

まずは観察と実験から

 まとまった解答は後で書くことにして、まずは問題を見て最初にやってみたことから紹介していこうと思う。このブログでは単に解答を紹介するだけじゃなくて、問題を解くときのライブ感も伝えてみたいからだ。この問題、初見ではどこから手をつけたらいいかすぐにはわからないだろう。そこで、具体的な小さな数で試してみる。解ける兆しが見えていないときでも、自分の手で一歩一歩問題に取り組むのが大切で、もし解けなくても「今の自分がどこまで行けるのか」を知ることが次の挑戦・成長にきっと繋がるからだ

p \le qとして一般性を失わないので、p=2,3,5の場合をまずは試してみよう。

問題の式は、

5^p+1 \equiv 0 (\bmod q)……(1)
5^q+1 \equiv 0 (\bmod p)……(2)

と書ける。

まず、p=2のとき、5 \equiv 1 (\bmod 2)より、

5^q+1 \equiv 1+1 \equiv 0 (\bmod 2)
5^2+1 \equiv 26 = 2 \times 13 \equiv 0 (\bmod q)

よって、(p,q)=(2,2),(2,13)が解の一つであることがわかる。

次に、p=3のとき、5 \equiv -1 (\bmod 3)より、

5^q+1 \equiv (-1)^q+1 = 0 (\bmod p) *1
5^3+1 \equiv 126 = 2 \times 3^2 \times 7 \equiv 0 (\bmod q)

よって、(p,q)=(3,3),(3,7)も解である。

p=5のときは、5 \equiv 0 (\bmod 5)より、

5^q+1 \equiv 1 (\bmod 5)

となるので題意を満たさない。

 ここまでやってみて、見つかった解に規則性らしきものがなさそうに感じられるので、ひょっとしたら、p \ge 5の解は存在しないんじゃないかという気がしてくる。
実際、p=2,3以外に解が無いことは後になってわかるが、前に進むために(1)、(2)式を少し変形してみる。

5^p \equiv -1 (\bmod q)……(1')
5^q \equiv -1 (\bmod p)……(2')

この式をしばらく見つめてみる。すると、右辺が-1だから取扱いにくいのかなと思えてくる。そこで、(1')、(2')式の両辺を二乗して右辺を1にしてみることにした。

5^{2p} \equiv 1 (\bmod q)……(3)
5^{2q} \equiv 1 (\bmod p)……(4)

 ここで、上の式がフェルマーの小定理(フェルマーの小定理 - Wikipedia)に似ていることに気づく。フェルマーの小定理を書き出してみると、p,q \not\equiv 5のとき、

5^{q-1} \equiv 1 (\bmod q)……(5)
5^{p-1} \equiv 1 (\bmod p)……(6)

が成り立つ。

 ここで、51から順にべき乗していったときに、はじめて1になるのはいつだろうかと考えてみることにした。*2このようなアイデアに自然に行き着いたのは、群論を勉強していたおかげだと思う。ともかく、

5^\lambda \equiv 1 (\bmod p)……(7)
5^\mu \equiv 1 (\bmod q)……(8)

を満たす最小の正の整数\lambda,\muを考える。*3 このとき、(3)(4)(5)(6)式の指数は、それぞれ対応する\lambda,\muの倍数であることがわかる。*4*5

もし、(7),(8)を満たす\lambda,\muが具体的に求まれば、p-1乗やq-1乗といった考えにくい式は扱わなくてすむだろう。そんなわけで、この問題を解く方針が定まった。それでは、解答に移ろう。

解答

 p \le qとして一般性を失わない。題意より、

5^p+1 \equiv 0 (\bmod q)……(1)
5^q+1 \equiv 0 (\bmod p)……(2)

であるが、これを変形して、

5^{2p} \equiv 1 (\bmod q)……(3)
5^{2q} \equiv 1 (\bmod p)……(4)

を得る。p,q \equiv 5の場合、(3)(4)式は明らかに成立しないので、以下p,q \not\equiv 5として考える。すると、フェルマーの小定理より、

5^{q-1} \equiv 1 (\bmod q)……(5)
5^{p-1} \equiv 1 (\bmod p)……(6)

が成り立つ。次に、

5^\lambda \equiv 1 (\bmod p)……(7)
5^\mu \equiv 1 (\bmod q)……(8)

を満たす最小の正の整数を\lambda,\muとおくと、(4)(6)(7)式より、2qp-1は共に\lambdaの倍数である。したがって、ある正の整数k,lにより、

2q=k \lambda……(9)
p-1=l \lambda……(10)

この2つの式より、(9)式の両辺をl倍して、

2 q l = k l \lambda = k(p-1)……(11)

ここで、q素数なので、kまたはp-1を割り切る。ところが、仮定よりp-1 \lt p \le qなので、qp-1を割り切らず、kqの倍数であることが言える。よって、ある正の整数mが存在して、

k=mq……(12)

が得られる。これを(9)式に代入すると、

2q=mq \lambda
2=m \lambda……(13)

となり、m,\lambdaが正の整数であることから、

\lambda=1,2……(14)

であることがわかった。

\lambda=1の場合、

(7)式より、

5^1\equiv 1 (\bmod p)……(15)

これを満たす素数pp=2のみである。

\lambda=2の場合、

(7)式より、

5^2=25 \equiv 1 (\bmod p)……(16)
5^1 \not\equiv 1 (\bmod p)……(17)

ここで、(16)式を満たす素数pは、p=2,3,\cdotsと調べていくことで、p=2,3のみであることがわかる。p=2は(15)式を満たすので、(17)式を満たさない。よって、\lambda=2の場合、p=3となる。

 以上より、題意を満たす素数p(\le q)は、p=2,3しか存在しないことが分かった。よって、求める解は、p \le qの条件を取り除くと、

(p,q)=(2,2),(2,13),(13,2),(3,3),(3,7),(7,3)

だけであることがわかる。

最後に本の紹介

今回の問題が解けたのは、群論を雪江先生の本で勉強していたことが大きかったと思う。そこで、群論に興味がある人のために、以下の本をおススメしておく。

代数学1 群論入門 (代数学シリーズ)

代数学1 群論入門 (代数学シリーズ)

 

 自分で読んだときは、数か所証明が分からないところもあったが、主要な部分は独学でも一通り理解できたので親切な良書だといえるだろう。ページ数も150ページ程度なので、頑張れば1~2週間くらいで読めるだろう。定理に対して例も豊富だが、ところどころ証明の要点があっさり書かれすぎている印象をいくらか受けた。数学科の優等生はこれで問題ないのだろうが、ここでつまづく人や独学の人は志賀先生の「群論への30講」を先に読んでみるのもいいと思う。ちなみに、こちらは少し頑張れば5~7日くらいで読めると思う。

群論への30講 (数学30講シリーズ)

群論への30講 (数学30講シリーズ)

 

 

*1:q \ge p=3は奇数より。

*2:p-1q-1が、必ずしもそのような最小の正の整数になっているとは限らないことに注意!!

*3: (7)、(8)式を満たす整数が少なくとも1つ存在することは(3)、(4)式よりわかっているので、このような数が存在することがわかる。

*4:このことの証明は、着目する数が倍数でないと仮定して、その数\lambda,\muで割ったときの余りに着目するといい。背理法により、矛盾が導ける。

*5:群論では、ラグランジュの定理(ラグランジュの定理 (群論) - Wikipedia)で説明される。

(a+b^3)/(ab)が整数となる整数a,bを全て求める

2015年ヨーロッパ数学オリンピック日本代表一次選抜試験より

久々に更新してみる。
twitterをのぞいてみたら、整数問題botの問題が目に入った。試しに解いてみたところ、読後感ならぬ解後感(?)が結構よかったので紹介してみたい。
下の問題である。

3分問題ということで、カップラーメンが出来上がるのを待っている間に解けるらしい。お手軽そうなのでやってみた。時間は測らなかったが、だいたい5分くらいで解けたような気がする。ちょっとした頭のストレッチになるので、挑戦したい人は以下の解答を見る前に自分でやってみてほしい。

解答

a+b^3bで割り切れることから、aはある正の整数a_1を用いて、

a=a_1 b

と書ける。*1これを問題の式に代入すると、

\frac{a+b^3}{ab}=\frac{b(a_1+b^2)}{a_1b^2}
=\frac{a_1+b^2}{a_1b}

となる。ここで気づくのが、元の問題の分子に表れていたbの指数32に下がっていることだ。さらに、問題の式の形はこの指数の部分を除いて、変わっていない。 そんなわけだから、この置き換えを繰り返し行えば、指数をどんどん減らしていけそうだ。

a_1=a_2 bと置き換えると、*2
\frac{a_1+b^2}{a_1b}=\frac{a_2+b}{a_2b}

a_2=a_3 bと置き換えると、*3
\frac{a_2+b}{a_2b}=\frac{a_3+1}{a_3b} ……(☆)

となり、分子のbは指数が0になってしまい、ついに消えてしまった。

問題の式が整数となるためには、分子の値は分母の値より、大きくないといけない。よって、

a_3+1 \ge a_3b
(b-1)a_3 \le 1……(♪)

b \ge 1なので、この式が成り立つためには、b=1または2でなければならない。

b=2のとき、

不等式(♪)より、a_3=1なので、
a_2=a_3 b=2
a_1=a_2 b=4
a=a_1 b=8

a,bの値が2,8と求まる。このとき、

\frac{a+b^3}{ab}=\frac{8+2^3}{8*2}=1

となり、確かに整数になる。

b=1のとき、

問題の式の値を、正の整数kとおくと、(☆)式より、
\frac{a_3+1}{a_3}=k

この式を変形して、

1=(k-1)a_3

この式を満たす正の整数の組(k,a_3)は明らかに、(2,1)のみである。
よって、

a=a_1=a_2=a_3=1

となり、(a,b)=(1,1)である。このとき、問題の式の値は2となる。

以上をまとめて、求める正の整数の組(a,b)は、

(a,b)=(1,1),(8,2)

の2つだけである■

*1:a+b^3 \equiv a \equiv 0 (\bmod b)より、明らか。

*2:a_2はある正の整数で、bの倍数になることは、abの倍数になることと同様に示せる。

*3:a_3はある正の整数で、bの倍数になることは、abの倍数になることと同様に示せる。

【IMO2017】国際数学オリンピックの問題2【解答・解説】

2017年国際数学オリンピック(IMO2017)の問題2

前回に引き続き、問題2に挑戦してみた。問題は、次の通り。(http://www.imojp.org/challenge/から引用。)

\mathbb{R}を実数全体からなる集合とする。関数 f: \mathbb{R} \rightarrow \mathbb{R}であって、任意の実数x,yに対して
f(f(x)f(y))+f(x+y)=f(xy)
が成り立つものをすべて求めよ。

 今回はこの問題に半日くらい粘ってみたが、想像以上に手ごわく、残念ながら完答できなかった。完答できていないのに、なんでこの記事を書いてるんだとツッコミをもらいそうだが、これにはちょっとした事情がある。

日本語の解答・解説を求めて

 なかなか解答の糸口をつかめず、「吸収モード」*1に入っていた私は、ヒントや解説をネットで探していた。ところが、解説が英語のものしか見当たらないのである。英語が得意じゃない私は、解答を理解するまでに必要以上の時間を使ってしまった。そこで今回は、解答・解説を日本語に書き直してまとめておくことにした。これで、英語が苦手なみんなも、気軽に数学オリンピックの問題を楽しめるようになるはずだ。*2

今回の解答・解説は、Youtubeに挙げられている次の2つの動画を参考にした。

www.youtube.com

www.youtube.com

これらの動画の解説を、私が理解できた範囲で組み合わせ、まとめ直して翻訳してみた。基本的な解答は1つ目の動画、解答の仕上げの部分は2つ目の動画の方法を使わせていただきました。*3もし私の英語力不足で間違い等があったら、やさしく指摘していただけると助かります。それでは、本題へ。

基本的な観察

 まずは、「f(x)が定数関数であるような解」が存在するか考えてみよう。すべてのxに対し、f(x)=a \in \mathbb{R}とおくと、問題の関数等式より、
a=f(f(x)f(y))=f(xy)-f(x+y)=a-a=0
となる。したがって、f(x)=0は問題の1つの解である。以降、これ以外の解を探すために、f(x)は恒等的に0でないとする。
 次に、x=y=0を代入してみる。*4
f(f(0)f(0))+f(0+0)=f(0 \cdot 0)
\Leftrightarrow f(f(0)^2)=0……①
つまり、f(0)^2というf(x)の零点が存在する。*5
 ここで、f(0)=0であると仮定すると、面白いことが起きる。問題の関数等式にy=0を代入すると、
f(f(x)f(0))=f(0)-f(x)
\Leftrightarrow f(0)=f(0)-f(x)
\Leftrightarrow f(x)=0
f(x)が恒等的に0になってしまうのだ。したがって、恒等的に0でない解を探すため、以後f(0) \ne 0とする。

零点の値を求めて

次に零点の値を調べる。つまり、f(r)=0となる実数rの値を求める。関数等式から、
f(0)=f(f(r)f(x))=f(rx)-f(r+x)
を得るが、f(0)0になってはいけないので、全てのxについて
rx \ne r+x
\Leftrightarrow x(r-1) \ne r
でなければいけない。そして、条件を満たすrは実は1に限る。理由は簡単で、もしr \ne 1ならx=r/(r-1)が上の式の等号を成立させてしまうからだ。
 結局、
f(r)=0 \Rightarrow r=1……②
であることがわかった。*6ここで、f(0)^2が零点であったことを思いだして(①式)、
f(0)^2=1
\Leftrightarrow f(0)= \pm 1
を得る。
 ところで、関数f(x)が問題の関数等式を満たすなら、-f(x)も関数等式を満たす。実際、このことは
f(f(x)f(y))+f(x+y)=f(xy)
\Leftrightarrow -f(f(x)f(y))-f(x+y)=-f(xy)
\Leftrightarrow -f( [-f(x)][-f(y)])-f(x+y)=-f(xy)
と確かめられる。そのため、f(0)=1となる解f(x)から、f(0)=-1となる解を構成することができる。そこで、以降は、
f(0)=1……③
として話を進める。

f(x)単射

 f(x)単射であることを証明する。ここがこの問題の山場であり、本質をつかなければいけない部分に思える。ここで、紹介する証明は、AoPS forumとかいうところ(?)でdnkywinさんが発表した方法らしい。
 ともかく、f(0)=1(③式)としたので、関数等式から
f(f(x)f(1))=f(x)-f(x+1)
\Leftrightarrow f(0)=f(x)-f(x+1) (①、②式より、f(1)=0なので)
\Leftrightarrow 1=f(x)-f(x+1)
\Leftrightarrow f(x+1)=f(x)-1……④

という漸化式のような等式を得る。
 f(x)単射であるというのは、f(a)=f(b)ならばa=bであることを指す。
そこで、f(a)=f(b)とおく。ここで、④式から、f(a)=f(b)の両辺に1を繰り返し足す(または引く)ことで、a \lt 1であるようにできるので、以下記号を適当に置き直してa \lt 1とする。
 ここで、(トリッキーだが)2次方程式
x^2-bx+a-1=0
を考える!すると、a \lt 1より、判別式D=b^2-4(a-1)が正となるので、この2次方程式は2つの実数解r,sを持つ。*7また、解と係数の関係から、
r+s=b
rs=a-1……⑤
である。これで下準備は終わった。満を持して、問題の関数等式でx=r,y=sを代入する!
f(f(r)f(s))=f(rs)-f(r+s)
=f(a-1)-f(b) (⑤式より)
=f(a)+1-f(b) (④式を使った。)
=1 (単射性を証明するときの仮定、f(a)=f(b)より。)
再び、④式を使って、
f(f(r)f(s)+1)=0 
ここで、②式より、
f(r)f(s)+1=1
\Leftrightarrow f(r)f(s)=0
を得る。すなわち、
f(r),f(s)の少なくとも一方が0
\Leftrightarrow r,sの少なくとも一方が1 (②式より)

が言える。ここで、解と係数の関係の式⑤に立ち返ると、
b=1+s
s+1=a
等から、a=bを得る*8。よって、f(a)=f(b) \Rightarrow a=bが言えたので、f(x)単射であることが証明された。

最後の仕上げ

最後の仕上げは、冒頭で挙げた2つ目の動画から紹介させていただきます。*9
 問題の関数等式で、y=-xとおくと、
f(f(x)f(-x))=f(-x^2)-f(0)
\Leftrightarrow f(f(x)f(-x))=f(-x^2)-1 (③式より)
\Leftrightarrow f(f(x)f(-x))=f(1-x^2) (④式より)
ここで、関数f単射性より、
f(x)f(-x)=1-x^2……⑥
を得る。
 同様に、問題の関数等式でy=1-xとおくと、
f(f(x)f(1-x))=f(x(1-x))-f(1)
\Leftrightarrow f(f(x)f(1-x))=f(x(1-x)) (①、②式より、f(1)=0なので)
再び、関数f単射性より、
f(x)f(1-x)=x(1-x)
\Leftrightarrow f(x)(f(-x)-1)=x(1-x) (④式より)
\Leftrightarrow f(x)f(-x)-f(x)=x-x^2
ここで、⑥式を用いると、
1-x^2-f(x)=x-x^2
\Leftrightarrow f(x)=1-x
を得る。よって、③式の上の方で書いたように、f(x)が解なら-f(x)も解である。よって、問題の関数等式を満たす解は、
f(x)=0,1-x,x-1
の3つである。

*1:問題を完全に見なかったことにして諦めるのではなく、さっさと解答を見て、そこから何かを吸収して成長するモードである。

*2:といっても、日本語に直してもなお、今回の問題は手ごわい。

*3:2つ目の動画は、f(x)単射性の証明に飛躍があるように思えたので注意しておきます。

*4:この手の素朴な実験は、問題に取り掛かり始めるときの常套手段だ。

*5:同様に、x=y=2を代入すると、f(2)^2も零点であることがわかる。ところが、こちらの零点は、今回の解答では出番がない。

*6:零点が存在することは、①式で証明されているので、逆にf(1)=0であることも当然言える。

*7:ここで、実数であることが重要だ。すぐ後で、関数fの変数としてr,sをとるからだ!

*8:r=1としたが、s=1としても同様にa=bが示せる。

*9:ここでは、元の動画と異なり、f(0)=1ととってあるので注意してください。

【IMO2017】2017年国際数学オリンピックの問題1【解答・解説】

2017年国際数学オリンピック(IMO2017)の問題1 

 なんとなく数学オリンピックの今年の問題を解いてみたくなったので挑戦してみた。問題は、数学オリンピック財団のサイト(http://www.imojp.org/challenge/)を参照しました。今回は、問題1の解答と解説をしていく。もし間違えていたら、優しく指摘してれると助かります。それと、もっと良い解法を教えてくれたら喜びます。
 では、問題を見てみましょう。

問題1. a_0 \gt 1をみたすような各整数a_0に対して、数列a_0,a_1,a_2,...を以下のように定める:
a_{n+1}= \{ \sqrt{a_n}      \sqrt{a_n}が整数のとき、
      \{ a_n+3  そうでないとき、    n=0,1,2,...
このとき、あるAが存在してa_n=Aをみたすnが無数にあるようなa_0をすべて求めよ。

まずは観察と場合わけから

 問題の数列の作り方は、平方数になったときだけルートをとり、それ以外は3を足していくことで作られている。慣れるために、いくつかの例でためしてみよう。

a_0=2のとき、2,5,8,11,...
a_0=3のとき、3,6,9,3,...
a_0=4のとき、4,2,5,8,...
a_0=5のとき、5,8,11,14,...
a_0=6のとき、6,9,3,6,...

という具合になる。3ずつ増えていくという特徴を活かすために、まずはa_03を法として分類してみる。

あるna_n \equiv 2(\mod 3)となる場合

 まずは、平方数を調べる。
 0^2 \equiv 0 (\mod 3)
 1^2 \equiv 1 (\mod 3)
 2^2 =4 \equiv 1 (\mod 3)
より、N \equiv 2(\mod 3)となる平方数は存在しないことがわかる。そのため、一旦あるna_n \equiv 2 (\mod 3)となると、それ以降この数列に平方数は現れない。したがって、a_nより後はすべて単調増加となるので、明らかに題意を満たさない。この観察結果から、a_n3を法としたときに、どのグループに属するかを考えていけばよさそうだと指針がたてられる。

a_0 \equiv 0 (\mod 3)の場合

 次は、a_0 \equiv 0 (\mod 3)の場合を考える。この場合は、任意のnに対してa_n \equiv 0(\mod 3)であることが示せる。
 実際、a_nが3の倍数なら、a_n+3も3の倍数である。
 また、a_nが平方数の場合は、k自然数としてa_n=k^2とおくと、素因数分解の一意性からある自然数lを用いてk=3lと表せる。したがって、この場合もa_{n+1}=3l \equiv 0 (\mod 3)となる。
 a_0 \equiv 0 (\mod 3)の場合は、a_n \equiv 2 (\mod 3)の場合とは異なり、数列 \{ a_n \}には明らかな上限a_0^2が存在する。*1
 正の整数列に上限と下限が存在するので、鳩ノ巣原理より少なくとも1つの自然数Aが存在して、a_n=Aとなるnが無数に存在する。
 以上より、a_0が3の倍数の場合は題意を満たす。

a_0 \equiv 1(\mod 3)の場合

最後に、a_0 \equiv 1(\mod 3)の場合を考える。数列を順番に作っていき、あるna_n \equiv 2(\mod 3)となれば、上に書いた証明から題意を満たさない。
そこで、すべてのnについて、a_n \equiv 1(\mod 3)となるa_0が存在すると仮定する。(以下でこの仮定から矛盾を導き、背理法により、いつか必ずあるna_n \equiv 2(\mod 3)となることを証明する。)
 今回は、平方数の最小性に着目した証明方法をとることにした。
まず \{ a_n \}の内、最小の平方数をl^2とおく。l^2より小さな平方数は存在しないので、数列の定義から、l^2の次の数列であるl \{ a_n \}の最小値となる。ここで、l^2の最小性から、ll^2の間に、a_n \equiv 1であるような数は存在しないはずである。ところが、次に示すように、そのような数を構成することができてしまうのだ。
 仮定より、lはある自然数mを用いてl=3m+1 (m \ge 2)と表せる。*2ここで、以下に定義する平方数Lを考える。

 L:= \{ 3(m-1)+1 \}^2=(3m-2)^2

この平方数Lは、明らかにl^2より小さい。また、

L-l=(3m-2)^2-(3m+1)
=9m^2-15m+3
 \gt 9m^2-15m
=9m(m-\frac{5}{3})
より、m \ge 2であるから、平方数L \equiv 1 (\mod 3)

l \lt L \lt l^2

を満たすが、このことは、l^2が最小の平方数であることに反する。
よって、背理法により、a_0 \equiv 1(\mod 3)の場合、あるna_n \equiv 2(\mod 3)となるので、題意を満たさない。

解答

以上をまとめて、題意を満たすa_0は『3の倍数』である。

*1:a_n3ずつ増加していくためa_0^2を"飛ばして"a_0^2より大きくなることができない。また、a_0^2まで増加できたとしても、定義よりa_{n+1}a_nより小さくなる。

*2:lが平方数でないことから、l=4の場合つまりm=1は仮定に反する。

【極限!?】2次方程式の解の公式と1次方程式の解

今日もどこかで『にーえーぶんの……』


今日も誰かがどこかで、

『にーえーぶんのまいなすびー、ぷらすまいなするーとびーじじょうまいなすよんえーしー』

と呪文のように口ずさむ。聞き覚えのある数学フレーズ、そんな2次方程式の解の公式にまつわる話を今回はしてみよう。


何はともあれ、2次方程式は、
ax^2+bx+c=0
という方程式のことで、a \ne 0の場合のものを指す。
このa \ne 0というのがさり気ない条件に聞こえるが、とっても大切だ。

冒頭で唱えた解の公式
x=\frac{-b \pm \sqrt{b^2-4ac}}{2a}
も、うっかりa=0としてみると、『0で割る』というタブーを冒してしまう。
ここで、1つの疑問が浮かんだ人もいるだろう。そう、

a \rightarrow 0の極限をとったとき、解の公式はどうなる?』

という疑問だ。

ヤフー知恵袋にて

この「解の公式の極限問題」は、やはりというかネットで質問している人がいた。
それが、ヤフー知恵袋における次の質問だ。

detail.chiebukuro.yahoo.co.jp


問題こそ解決ずみになっているが、そのベストアンサーが、私にはなんともスッキリしないものに感じられた。そこで、今回の記事では、この疑問に真正面から立ち向かう。
といっても、ちょっとした計算をするだけれど……


1次方程式へ向かって

a \rightarrow 0の極限をとると、もともとの2次方程式は、
 ax^2+bx+c \rightarrow bx+c=0
となる。ここで、b \ne 0場合を考えることにすると、これは1次方程式になる。
もちろんその解は、
x=- \frac{c}{b}
だ。したがって、2次方程式の解の公式
x=\frac{-b \pm \sqrt{b^2-4ac}}{2a}
a \rightarrow 0の極限をとると、その内1つは-c/bになると期待できる。
ここで、本当に答えるべき質問は、

①2次方程式の解の公式の極限をどうやってとるか?
②2つあった解の内、もう1つはどうなるか?

の2つだろう。しかし、極限をとるにしても、解の公式の分母にaが残ったままではやりづらそうだ。そこで、ちょっと意外なテクニックが使えることに気づいたので紹介したいと思う。それは、いわば、

『分子の有理化』

とでも言えるテクニックである。

「分子の有理化」と「解の公式の極限」

普通学校では、「分母を有理化せよ」と問題に出される。今回は、あえてその逆である「分子」を有理化していく。何が起こるかは、下の計算を少し追ってみてほしい。(以下、複号同順。)一行ずつ丁寧にやっていく。
x=\frac{-b \pm \sqrt{b^2-4ac}}{2a}
 =\frac{-b \pm \sqrt{b^2-4ac}}{2a}\frac{-b \mp \sqrt{b^2-4ac}}{-b \mp \sqrt{b^2-4ac}}
 =\frac{b^2 - (b^2-4ac)}{2a(-b \mp \sqrt{b^2-4ac})}
 =\frac{4ac}{2a(-b \mp \sqrt{b^2-4ac})}
ここで、なんと、分母と分子の両方aが表れているので「約分」できてしまうのだ。「約分」すると、
x=\frac{2c}{-b \mp \sqrt{b^2-4ac}}
となる。「分母にルートタイプ」の解の公式である。覚えるには、

『にーしーわる、まいなすびー、まいなすぷらするーとびーじじょうよんえーしー』

と唱えればいい。
とにかく、こうなってしまえば、後はa \rightarrow 0の極限をとるだけだ。
x \rightarrow \frac{2c}{(-b \mp \sqrt{b^2})}
 = \frac{2c}{-b \mp |b|}
|b|の絶対値を外すと、+b-bのいずれかなので、結局、解の公式に現れる2つの解の極限は、
x \rightarrow \frac{2c}{-b \pm b}
つまり、
x \rightarrow -\frac{c}{b},\infty
となる。*1
以上のようにして、2次方程式の「解の公式の極限問題」は、「分子の有理化」というちょっと予想外のテクニックによって解決したのであった。

 

え……?

『3次方程式の解の公式の極限がどうなるか』って?

気が向いたらやるかもしれませんし、面倒そうなのでやらないかもしれません。
それでは、また次の更新でお会いしましょう。

*1:ここで、\inftyと書いたのは、c \ne 0のとき、分母が0になると発散するという意味で書いた。c=0の場合は、もちろん「不定」になる。